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Abstract – Cloud computing is the long dreamed vision of 

computing as a utility, where users can remotely store their data 

into the cloud so as to enjoy the on-demand high quality 

applications and services from a shared pool of configurable 

computing resources. However, the fact that users no longer 

have physical possession of the possibly large size of outsourced 

data makes the data integrity protection in Cloud computing a 

very challenging and potentially formidable task, especially for 

users with constrained computing resources and capabilities. 

Existing privacy-preserving public auditing protocols assume the 

end devices of users are powerful enough to compute all costly 

operations in real time when the data to be outsourced is given. 

In fact, the end devices may also be those with low computation 

capabilities.  Thus the proposed system is used for two 

lightweight privacy-preserving public auditing protocols. 1) TPA 

should be able to efficiently audit the cloud data storage without 

demanding the local copy of data, and introduce no additional 

on-line burden to the cloud user; 2) The third party auditing 

process should bring in no new vulnerabilities towards user data 

privacy. The algorithm proposed here is online/offline algorithm. 

Thus the proposals support batch auditing and data dynamics. 

Index Terms – Cloud Computing, Big data, Secure Storage, 

Significance, 

1. INTRODUCTION 

Cloud computing is a new-generation distributed computing 

platform that is extremely useful for data storage and 

processing. Many data applications are being migrated or 

have been migrated into clouds. One of thecloud's core 

concepts is ‘X as a Service’ (XaaS), including Infrastructure-

as-a-Service(IaaS), Platform-as-a-Service (PaaS), and 

Software-as-a-Service (SaaS), which means that both 

individual and enterprise users can use IT services in a pay-

as-you-go fashion. Compared to traditional distributed 

systems, cloud computing brings outstanding advantages 

Times New Roman font with size 10 should be used. 

Many international IT partnerships offer these administrations 

to clients on a scale from individual to big business 

everywhere throughout the world; cases are Amazon AWS, 

Microsoft Azure, and IBM Smart Cloud. 

Information reviewing plans can empower cloud clients to 

check the respectability of their remotely put away 

information without downloading them locally, which is 

named as blockless confirmation. With inspecting plans, 

clients can occasionally collaborate with the CSP through 

reviewing conventions to check the accuracy of their 

outsourced information by confirming the respectability 

confirmation figured by the CSP, which offers more grounded 

trust in information security since client's own decision that 

information is in place is substantially more persuading than 

that from specialist organizations. For the most part talking, 

there are a few patterns in the improvement of evaluating 

plans. 

Above all else, prior evaluating plans more often than not 

require the CSP to create a deterministic verification by 

getting to the entire information record to perform honesty 

check, e.g., plots in [1], [2] utilize the whole document to 

perform particular exponentiations. Such plain arrangements 

bring about costly calculation overhead at the server side, thus 

they need productivity and common sense when managing 

vast size information. Spoken to by the "testing" technique in 

"Confirmations of Retrievability" (PoR) [3] display and 

"Provable Data Possession" (PDP) [4] demonstrate, later 

plans [5], [6] have a tendency to give a probabilistic evidence 

by getting to some portion of the record, which clearly 

improves the examining proficiency over prior plans. 

Data security and information isolation are a portion of the 

fundamental worry in the acknowledgment of cloud 

computing. Clients lose their immediate control on 

information when they aggregate information on cloud as 

contrast with traditional frameworks. The issue of 

genuineness affirmation for information stockpiling on cloud 

called as information review when the affirmation is directed 

by a trusted outsider i.e. TPA called as an assessor. 
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Furthermore, some examining plans [3], [7] give private 

obviousness that require just the information proprietor who 

has the private key to play out the inspecting errand, which 

may possibly overburden the proprietor because of its 

restricted calculation capacity. Ateniese el al. [4] were the 

first to propose to empower open unquestionable status in 

reviewing plans. Conversely, open inspecting plans [5], [6] 

permit any individual who has the general population key to 

play out the examining, which makes it feasible for the 

evaluating undertaking to be appointed to an outside outsider 

examiner (TPA). A TPA can play out the honesty mind 

benefit of the information proprietor and genuinely report the 

inspecting result to him [8]. 

Generally, this paper proposes a new auditing scheme to 

address the problems of data dynamics support, public 

verifiability and dispute arbitration simultaneously. Our 

contributions mainly lie in: 

2. RELATED WORK 

Remote integrity check could be sourced to memory check 

schemes [21], [22] that aim to verify read and write operations 

to a remote memory. Recently, many auditing schemes [1], 

[2], [23], [24], [25], [26] have been proposed around checking 

the integrity of outsourced data. 

Deswarte et al. [1] and Filho et al. [2] use RSA-based hash 

functions to check a file’s integrity. Although their 

approaches allow unlimited auditing times and offer constant 

communication complexity, their computation overhead is too 

expensive because their schemes have to treat the whole file 

as an exponent. Opera et al. [23] propose a scheme based on 

tweakable block cipher to detect unauthorized modification of 

data blocks, but verification needs to retrieve the entire file, 

thus the overhead of data file access and communication are 

linear with the file size. Schwarz et al. [24] propose an 

algebraic signature based scheme, which has the property that 

the signature of the parity block equals to the parity of the 

signatures on the data blocks. However, the security of their 

scheme is not proved. Sebe et al. [26] provide an integrity 

checking scheme based on the Diffie- Hellman problem. They 

fragment the data file into blocks of the same size and 

fingerprint each data block with an RSAbased hash function. 

But the scheme only works when the block size is much 

larger than the RSA modulus N, and it still needs to access the 

whole data file. Shah et al. [7], [27] propose a privacy-

preserving auditing protocol that allows a third party auditor 

to verify the integrity of remotely stored data and assist to 

extract the original data to the user. As their scheme need 

firstly encrypt the data and precompute a number of hashes, 

the number of auditing times is limited and it only works on 

encrypted data. Furthermore, when these hash values are used 

up, the auditor has to regenerate a list of new hash values, 

which leads to extremely high communication overhead. 

From above analysis, it can be seen that earlier schemes 

usually generate a deterministic proof by accessing the whole 

data file, thus their efficiency is limited due to the high 

computation overhead. To address this problem, later schemes 

tend to generate a probabilistic proof by accessing part of the 

date file. Jules et al. [3], [28] propose a proofs of retrievability 

(PoR) model, where spot-checking and errorcorrecting code 

are used to guarantee the possession and retrievability of 

remote stored data. However, PoR can only be applied to 

encrypted data, and the number of auditing times is a fixed 

priori due to the fact that sentinels embedded in the encrypted 

data could not be reused once revealed. Dodis el al. identify 

several other variants of PoR in [29]. Ateniese et al. [4] are 

the first to put forward the notion of public verifiability in 

their provable data possession (PDP) scheme, where the 

auditing tasks can be delegated to a third-party auditor. In 

PDP, they propose to randomly sample a few data blocks to 

obtain a probabilistic proof, which greatly reduces the 

computation overhead. Moreover, PDP scheme allows 

unlimited number of auditing. Shacham et al. [5] design an 

improved PoR scheme and provide strict security proofs in 

the security model defined in [3], they use homomorphic 

authenticators and provable secure BLS signatures [30] to 

achieve public verifiability, which is not provided in Jules’ 

main PoR scheme. Some other schemes [7], [14], [31] with 

public auditability aim to provide privacy protection against 

information leakage toward a third-party auditor in the 

process of integrity auditing. 

To support data dynamics in auditing schemes, Ateniese et al. 

[32] propose a dynamic version of their original PDP scheme 

using symmetric encryption, however, the number of auditing 

times is limited and fully block insertion is not supported 

(only append-type insertion is supported). Erway et al. [9] 

firstly propose to construct a fully dynamic provable data 

possession (DPDP) scheme. To eliminate the index limitation 

of tag computation in original PDP scheme and avoid tag re-

computation brought by data dynamics, they use the rank of a 

skip list node (similar to block index) to uniquely differentiate 

among blocks and authenticate the tag information of 

challenged blocks before proof verification. However, the 

skip list in essence is an authenticated structure used to test 

set-membership for a set of elements. To prove the 

membership of a specific node, a verification path from the 

start node to the queried node must be provided, its 

communication cost is linear to the number of challenged 

blocks. Moreover, there’s no explicit implementation of 

public verifiability given for their scheme. Qian Wang et al. 

[6] combine BLS signature based homomorphic authenticator 

with Merkle hash tree to provide both public auditability and 

fully dynamic operations support. Specifically, their scheme 

constructs a Merkle hash tree, stores the hashes of tags in the 

leaf nodes and recursively computes the root and signs it, 

which is used to authenticate the tags of challenged blocks. 
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Furthermore, they eliminate the index limitation in tag 

computation by using H(mi) to replace H(name||i) in [5], 

which requires blocks to be different with each other. 

However, such a requirement on data blocks is not 

appropriate since the probability of block resemblance 

increases when block size decreases. In addition, due to the 

authentication of challenged blocks with a Merkle Hash Tree 

[33], the communication cost of their scheme is also linear to 

the number of requested blocks. Zhu et al. [10], [34] use 

index-hash table to construct their dynamic auditing scheme 

based on zero knowledge proof, which is similar to our index 

switcher in terms of index differentiation and avoidance of tag 

re-computation. But their design mainly focuses on data 

dynamics support, while our scheme goes further by 

achieving dynamic operations support and fair arbitration 

together. 

Qian Wang et al. [6] combine BLS signature based 

homomorphic authenticator with Merkle hash tree to provide 

both public auditability and fully dynamic operations support. 

Specifically, their scheme constructs a Merkle hash tree, 

stores the hashes of tags in the leaf nodes and recursively 

computes the root and signs it, which is used to authenticate 

the tags of challenged blocks. Furthermore, they eliminate the 

index limitation in tag computation by using H(mi) to replace 

H(name||i) in [5], which requires blocks to be different with 

each other. However, such a requirement on data blocks is not 

appropriate since the probability of block resemblance 

increases when block size decreases. In addition, due to the 

authentication of challenged blocks with a Merkle Hash Tree 

[33], the communication cost of their scheme is also linear to 

the number of requested blocks. Zhu et al. [10], [34] use 

index-hash table to construct their dynamic auditing scheme 

based on zero-knowledge proof, which is similar to our index 

switcher in terms of index differentiation and avoidance of tag 

re-computation. But their design mainly focuses on data 

dynamics support, while our scheme goes further by 

achieving dynamic operations support and fair arbitration 

together. 

Recently, providing fairness and arbitration in auditing 

schemes has become an important trend, which extends and 

improves the threat model in early schemes to achieve a 

higher level of security insurance. Zheng et al. [11] construct 

a fair and dynamic auditing scheme to prevent a dishonest 

client accusing an honest CSP. But their scheme only realizes 

private auditing, and is difficult to be extended to support 

public auditing. Kupcu [12] proposes a framework on top of 

Erway’s DPDP scheme [9], where the author designs 

arbitration protocols on the basis of fair signature exchange 

protocols in [13]. Moreover, the author goes further by 

designing arbitration protocols with automated payments 

through the use of electronic cash. Compared to these 

schemes, our work is the first to combine public verifiability, 

data dynamics support and dispute arbitration simultaneously. 

Other extensions to both PDPs and PoRs are given in [35], 

[36], [37], [38], [39]. Chen et al. [37] introduce a mechanism 

for data integrity auditing under the multiserver scenario, 

where data are encoded with network code. Curtmola et al. 

[35] propose to ensure data possession of multiple replicas 

across the distributed storage scenario. They also integrate 

forward error-correcting codes into PDP to provide robust 

data possession in [36]. Wang et al. [39] utilize the idea of 

proxy re-signatures to provide efficient user revocations, 

where the shared data are signed by a group of users. And in 

[16], [38], they exploit ring signatures to protect the identity-

privacy of signers from being known by public verifiers 

during the auditing. 

3. PROPOSED MODELLING  

In the cloud environment, both clients and CSPs have the 

motive to cheat. The scheme in the aim of supporting 

variable-sized data blocks, authorized third party auditing and 

fine-grained dynamic data updates is described in four parts 

which are shown in figure 4.1ist as follows: 

User: Users are those who have data to be stored in the cloud. 

Cloud Service Provider (CSP): A CSP, who has significant 

resources and expertise in building and managing distributed 

cloud storage servers. 

Third Party Auditor (TPA): A TPA is trusted to assess and 

expose risk of cloud storage services based on the user’s 

request. 

Third Party Arbitrator (TPAR): A TPAR is trusted to 

fairly settle any dispute about proof verification and dynamic 

update, and find out the cheating party.  

To guarantee secure access control in public cloud storage, we 

claim that an access control scheme needs to meet the 

following four basic security requirements: 

Data confidentiality. Data content must be kept confidential 

to unauthorized users as well as the curious cloud server. 

Collusion-resistance. Malicious users colluding with each 

other would not be able to combine their attributes to decrypt 

a ciphertext which each of them cannot decrypt  alone. 

TPA accountability. An auditing mechanism must be 

devised to ensure that an TPAs misbehavior can be detected 

to prevent Users abusing their power without being detected. 

No ultra vires for any TPA. An TPA should not have 

unauthorized power to directly generate secret keys for users. 

This security requirement is newly introduced based on our 

proposed hierarchical framework. 

 The owner of the file will upload the data to the 

cloud[The file is fragmented into blocks, encrypted 

and stored in cloud].Each file is recognized by a 
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unique ID and the details about file ID and its 

associated block data are maintained in a log file in 

cloud by CSS[for each file the log detail is updated]. 

 After uploading, the owner of the file also plays a 

role of client as any authenticated client can update 

/modify the existing file in cloud. 

 

Fig 1. Architecture  

 When the file gets uploaded to the cloud the third 

party auditor (TPA) verifies the file and its blocks 

[e.g File consists of all pages from 1 to 10 or not].If 

the file is consistent, then verified flag is set with 

unique key value. 

 Similarly the CSS also verifies the file, the same way 

as (TPA) and the generated key will also be similar, 

if the file is consistent. 

 The client after logging in to the cloud can get to see 

about the files available, but the client cannot access 

it. 

 Before giving access to the client the third party 

arbitrator authenticates the file by matching the key 

provided by TPA and CSS to TPAR; if it matches, 

then the client is given access to the file. 

 Now here the client also has the privilege to modify 

the file.This is the reason why the owner is also 

logged in as a client. 

 After the updation of the file,step 3 to step 7 are 

followed the same. 

 For each client’s request,before giving access to the 

client,the TPAR authenticates and then proceeds 

accordingly. 

2.1 Design Goals 

Our design goals can be summarized as follows: 

1) Public verifiability for data storage correctness: to allow 

anyone who has the public key to verify the correctness of 

users’ remotely stored data; 

2) Dynamic operation support: to allow cloud users to 

perform full block-level operations (modification, insertion 

and deletion) on their outsourced data while guarantee the 

same level of data correctness, and the scheme should be as 

efficient as possible; 

3) Fair dispute arbitration: to allow a third party arbitrator to 

fairly settle any dispute about proof verification and dynamic 

update, and find out the cheating party. 

4. PROPOSED METHODOLOGY 

Setup: The client will generate keying materials via KeyGen 

and FileProc, and then upload the data to CSS. The client will 

store a RMHT instead of a MHT as metadata. Moreover, the 

client will authorize the TPA by sharing a value signature 

with AUTHENTICATON.  

Verifiable Data Updating: The CSS performs the client’s fine-

grained update  requests via Perform Update,then the client 

runs VerifyUpdate tocheck whether CSS has performed the 

updates on both the data blocks and their corresponding 

authenticators (used for auditing) honestly. 

Challenge, Proof Generation and Verification:It describes 

how the integrityof the data stored on CSS is verified by TPA 

via GenChallenge,GenProof and Verify. 

3.1 Integrity Checking 

TPA must show CSS that it is indeed authorized by the file 

owner before it can challenge a certain file. TPA will decide 

to verify some blocks from the total blocks. Then, a challenge 

message is generated with TPA’s ID, which is encrypted with 

the CSS’s public key. So that CSS can later decrypt with the 

corresponding secret key. TPA then sends challenge to CSS. 

After receiving challenge, CSS will first verify signature and 

the client’s public key and output REJECT if it fails. 

Otherwise, CSS will compose the proof P as then output P. 

CSS will send P to TPA. After receiving P, TPA verify 

signature by using public keys. If they are equal, then returns 

TRUE, otherwise it returns FALSE. 

3.2 Block-Level Operations 

 Block-level operations in fine-grained dynamic data 

updates may contain the following 5 types of 

operations 

 Partial Modification: Consecutive part of a certain 

block needs to be updated;  
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 Whole-Block Modification: Whole block needs to be 

replaced by a new set of data;  

 Block Deletion: Whole block needs to be deleted 

from the tree structure;  

 Block Insertion : Whole block needs to be created on 

the tree structure to contain newly inserted data;  

 Block splitting: Part of data in a block needs to be 

taken out to form a new block to be inserted next to 

it. 

3.3 Arbitration 

As we have called attention to previously, in the cloud 

condition, the two customers and CSPs have the thought 

process to swindle. In our plan, the PPAP is utilized by the 

reviewer to get key lists for asked for obstructs at evidence 

confirmation stage, hence the check result depends on the 

accuracy of the record maker. Be that as it may, the age and 

refresh of record switcher are performed by the information 

proprietor just, it will possibly give an untrustworthy 

proprietor the chance of dishonestly blaming a genuine CSP. 

In this sense, we should give some system to guarantee the 

accuracy of the file switcher and further the reasonableness of 

conceivable assertion, so no gathering can outline the other 

party without being recognized. 

A direct route is to let the arbitrator(TPAR) keep a duplicate 

of the list of keys. Since the difference in the list is caused by 

unique tasks, the customer can send essential refresh data (i.e., 

activity write, activity position, new label file) to the TPAR 

for each refresh activity. With these data, the referee could re-

develop the most recent variant of the file switcher, whose 

accuracy chooses the legitimacy of later assertion. In any 

case, such an answer costs O(n) stockpiling at the authority 

side and needs the mediator to be associated with each refresh 

activity. In a perfect world, we need the TPAR just embrace 

the part of an authority who includes just at question 

settlement, and keeps up a consistent stockpiling for state 

data, i.e., open keys of the customer and the CSP. 

3.3.1 Integrity Proof 

1) The Third party Arbitrator (TPAR) requests {Seqc;Ωs; Sigs} 

and Sigs from the client. Then he checks the signature Sigs of 

the CSP. If it is invalid, the TPAR may unauthorize the client 

for their ineffiency; otherwise the TPAR proceeds. 

2) The TPAR requests {Seqs;Ωs; Sigc} from the CSP. Then he 

checks the signature Sigc of the client. If the signature does 

not verify correctly, the TPAR may unauthorize the CSP for 

their ineffiency; otherwise the TPAR proceeds. 

3) If Seqc = Seqs, then the TPAR requests from the client the 

challenged set Q that causes dispute on proof verification and 

retransmit it to the CSP to run the auditing scheme. The CSP 

computes the proof returns it to the TPAR for verification. 

The TPAR checks the proof using the verified index switcher. 

4) If there is a mismatch in Seqc and Seqs. The TPAR can be 

sure that the party who gives a smaller sequence number is 

performing a replay attack; he may unauthorize the cheating 

party. Specifically, if Seqc>Seqs, the client is cheating by 

replaying an old signature from the CSP; if Seqs>Seqc, the 

CSP is cheating by replaying an old signature from the client. 

 

Fig 2. Message Generated System 

3.3.2 Fair Arbitration Dynamic Update 

The first two steps are the same as that of the arbitration 

protocol on integrity proof. According to the result of 

sequence number comparison (Seqc and Seqs), we divide the 

protocol into two situations. 

 The TPAR requests the update record from the 

client. 

 For block modification and insertion, the TPAR 

verifies the correctness of by verifying. If fails, the 

TPAR may unauthorized the client for cheating; 

otherwise, the TPAR is convinced that the updated 

block and its tag are consistent with each other. For 

block deletion, this step can be omitted. 

 The TPAR transmits to the CSP, and requests on the 

small challenge set from the CSP. Then he verifies 

the validity according to algorithm. If fails, the 

TPAR may unauthorize the CSP for denying the 

update; otherwise, the TPAR proceeds. 

 The TPAR updates the index switcher, and then he 

requests and verifies new signatures from both 

parties. The TPAR may unauthorize the party who 
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sends an invalid signature. If both signatures verify, 

the TPAR forwards to the CSP, and to the client. 

 

Fig 3. Message Checking System 

5. PERFORMANCE EVALUATION 

Our scheme is implemented using Scripting language on a 

Linux system equipped with a 4-Core Intel 3 processor 

running at 2.4GHz, 4GB RAM and a 7200 RPM 2TB drive. 

Algorithms are implemented using the Pairing-Based 

Cryptographic (PBC) library 0.5.11 and the crypto library 

OpenSSL 1.0.0. For security parameters, we choose the curve 

group with a 160-bit group order and the size of modulus is 

1024 bits. Our scheme provides probabilistic proof as [4]: if t 

fraction of the file is corrupted, by challenging a constant c 

blocks of the file, the auditor can detect the data corruption 

behavior at least with probability p = 1 − (1 − t)c. We choose 

c = 460, thus the detection probability is about 99%. The 

integrity proof is of constant size as in [5]. While most 

authenticated structure based schemes [6], [9], [11] need to 

send auxiliary authentication information to the auditor, 

which leads to linear communication overhead. The size of 

the test data is 10 GB, and the block size of fragmentation 

varies from 2 KB to 1 MB. All results are on the average of 

10 trials. 

We analyze the performance of our auditing scheme from 

three aspects: key generation time, encryption time time and 

File Upload time. For data dynamic update and dispute 

arbitration, we test the update overhead by inserting, deleting 

and modifying 100 blocks and tags. In addition, we test the 

cost of signature computation and verification with the index 

switcher containing different number of index pairs, and the 

shifting overhead of index pairs caused by block insertion and 

deletion. 

 

 

Fig 4. File Size vs Upload Time 

 

Fig 5. File Size Vs Encryption Time 

6. CONCLUSION 

The aim of this paper is to provide an honesty evaluating plan 

with public undeniable nature, proficient information flow 

and reasonable debate intervention. To dispense with the 

confinement of list use in label calculation and proficiently 

support information flow, we separate between piece records 

and label files, and devise a list switcher to keep square label 

list mapping to stay away from label re-calculation caused by 

square refresh activities, which brings about constrained extra 

overhead, as appeared in our execution assessment. In the 

mean time, since the two customers and the CSP possibly 

may get rowdy amid inspecting and information refresh, we 

expand the current danger show in flow research to give 

reasonable intervention to understanding question amongst 

customers and the CSP, which is of essential criticalness for 

the sending and advancement of evaluating plans in the cloud 

environment. Our examinations show the effectiveness of our 

proposed scheme, whose overhead for dynamic update and 

dispute arbitration are reasonable. 
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