
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 182

Secure and Efficient Third Party Auditing Scheme

for Cloud Data Storage

Manibharathi R

Senior Developer, Shiro Software Solutions, Nagercoil, Tamil Nadu, India.

Dr.K.Selva kumar

Assistant Professor, Department of Mathematics, University College of Engineering, Nagercoil, Tamil Nadu, India.

Dinesh R

Project Manager, Shiro Software Solutions, Nagercoil, Tamil Nadu, India.

Abstract – Cloud computing is the long dreamed vision of

computing as a utility, where users can remotely store their data

into the cloud so as to enjoy the on-demand high quality

applications and services from a shared pool of configurable

computing resources. However, the fact that users no longer

have physical possession of the possibly large size of outsourced

data makes the data integrity protection in Cloud computing a

very challenging and potentially formidable task, especially for

users with constrained computing resources and capabilities.

Existing privacy-preserving public auditing protocols assume the

end devices of users are powerful enough to compute all costly

operations in real time when the data to be outsourced is given.

In fact, the end devices may also be those with low computation

capabilities. Thus the proposed system is used for two

lightweight privacy-preserving public auditing protocols. 1) TPA

should be able to efficiently audit the cloud data storage without

demanding the local copy of data, and introduce no additional

on-line burden to the cloud user; 2) The third party auditing

process should bring in no new vulnerabilities towards user data

privacy. The algorithm proposed here is online/offline algorithm.

Thus the proposals support batch auditing and data dynamics.

Index Terms – Cloud Computing, Big data, Secure Storage,

Significance,

1. INTRODUCTION

Cloud computing is a new-generation distributed computing

platform that is extremely useful for data storage and

processing. Many data applications are being migrated or

have been migrated into clouds. One of thecloud's core

concepts is ‘X as a Service’ (XaaS), including Infrastructure-

as-a-Service(IaaS), Platform-as-a-Service (PaaS), and

Software-as-a-Service (SaaS), which means that both

individual and enterprise users can use IT services in a pay-

as-you-go fashion. Compared to traditional distributed

systems, cloud computing brings outstanding advantages

Times New Roman font with size 10 should be used.

Many international IT partnerships offer these administrations

to clients on a scale from individual to big business

everywhere throughout the world; cases are Amazon AWS,

Microsoft Azure, and IBM Smart Cloud.

Information reviewing plans can empower cloud clients to

check the respectability of their remotely put away

information without downloading them locally, which is

named as blockless confirmation. With inspecting plans,

clients can occasionally collaborate with the CSP through

reviewing conventions to check the accuracy of their

outsourced information by confirming the respectability

confirmation figured by the CSP, which offers more grounded

trust in information security since client's own decision that

information is in place is substantially more persuading than

that from specialist organizations. For the most part talking,

there are a few patterns in the improvement of evaluating

plans.

Above all else, prior evaluating plans more often than not

require the CSP to create a deterministic verification by

getting to the entire information record to perform honesty

check, e.g., plots in [1], [2] utilize the whole document to

perform particular exponentiations. Such plain arrangements

bring about costly calculation overhead at the server side, thus

they need productivity and common sense when managing

vast size information. Spoken to by the "testing" technique in

"Confirmations of Retrievability" (PoR) [3] display and

"Provable Data Possession" (PDP) [4] demonstrate, later

plans [5], [6] have a tendency to give a probabilistic evidence

by getting to some portion of the record, which clearly

improves the examining proficiency over prior plans.

Data security and information isolation are a portion of the

fundamental worry in the acknowledgment of cloud

computing. Clients lose their immediate control on

information when they aggregate information on cloud as

contrast with traditional frameworks. The issue of

genuineness affirmation for information stockpiling on cloud

called as information review when the affirmation is directed

by a trusted outsider i.e. TPA called as an assessor.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 183

Furthermore, some examining plans [3], [7] give private

obviousness that require just the information proprietor who

has the private key to play out the inspecting errand, which

may possibly overburden the proprietor because of its

restricted calculation capacity. Ateniese el al. [4] were the

first to propose to empower open unquestionable status in

reviewing plans. Conversely, open inspecting plans [5], [6]

permit any individual who has the general population key to

play out the examining, which makes it feasible for the

evaluating undertaking to be appointed to an outside outsider

examiner (TPA). A TPA can play out the honesty mind

benefit of the information proprietor and genuinely report the

inspecting result to him [8].

Generally, this paper proposes a new auditing scheme to

address the problems of data dynamics support, public

verifiability and dispute arbitration simultaneously. Our

contributions mainly lie in:

2. RELATED WORK

Remote integrity check could be sourced to memory check

schemes [21], [22] that aim to verify read and write operations

to a remote memory. Recently, many auditing schemes [1],

[2], [23], [24], [25], [26] have been proposed around checking

the integrity of outsourced data.

Deswarte et al. [1] and Filho et al. [2] use RSA-based hash

functions to check a file’s integrity. Although their

approaches allow unlimited auditing times and offer constant

communication complexity, their computation overhead is too

expensive because their schemes have to treat the whole file

as an exponent. Opera et al. [23] propose a scheme based on

tweakable block cipher to detect unauthorized modification of

data blocks, but verification needs to retrieve the entire file,

thus the overhead of data file access and communication are

linear with the file size. Schwarz et al. [24] propose an

algebraic signature based scheme, which has the property that

the signature of the parity block equals to the parity of the

signatures on the data blocks. However, the security of their

scheme is not proved. Sebe et al. [26] provide an integrity

checking scheme based on the Diffie- Hellman problem. They

fragment the data file into blocks of the same size and

fingerprint each data block with an RSAbased hash function.

But the scheme only works when the block size is much

larger than the RSA modulus N, and it still needs to access the

whole data file. Shah et al. [7], [27] propose a privacy-

preserving auditing protocol that allows a third party auditor

to verify the integrity of remotely stored data and assist to

extract the original data to the user. As their scheme need

firstly encrypt the data and precompute a number of hashes,

the number of auditing times is limited and it only works on

encrypted data. Furthermore, when these hash values are used

up, the auditor has to regenerate a list of new hash values,

which leads to extremely high communication overhead.

From above analysis, it can be seen that earlier schemes

usually generate a deterministic proof by accessing the whole

data file, thus their efficiency is limited due to the high

computation overhead. To address this problem, later schemes

tend to generate a probabilistic proof by accessing part of the

date file. Jules et al. [3], [28] propose a proofs of retrievability

(PoR) model, where spot-checking and errorcorrecting code

are used to guarantee the possession and retrievability of

remote stored data. However, PoR can only be applied to

encrypted data, and the number of auditing times is a fixed

priori due to the fact that sentinels embedded in the encrypted

data could not be reused once revealed. Dodis el al. identify

several other variants of PoR in [29]. Ateniese et al. [4] are

the first to put forward the notion of public verifiability in

their provable data possession (PDP) scheme, where the

auditing tasks can be delegated to a third-party auditor. In

PDP, they propose to randomly sample a few data blocks to

obtain a probabilistic proof, which greatly reduces the

computation overhead. Moreover, PDP scheme allows

unlimited number of auditing. Shacham et al. [5] design an

improved PoR scheme and provide strict security proofs in

the security model defined in [3], they use homomorphic

authenticators and provable secure BLS signatures [30] to

achieve public verifiability, which is not provided in Jules’

main PoR scheme. Some other schemes [7], [14], [31] with

public auditability aim to provide privacy protection against

information leakage toward a third-party auditor in the

process of integrity auditing.

To support data dynamics in auditing schemes, Ateniese et al.

[32] propose a dynamic version of their original PDP scheme

using symmetric encryption, however, the number of auditing

times is limited and fully block insertion is not supported

(only append-type insertion is supported). Erway et al. [9]

firstly propose to construct a fully dynamic provable data

possession (DPDP) scheme. To eliminate the index limitation

of tag computation in original PDP scheme and avoid tag re-

computation brought by data dynamics, they use the rank of a

skip list node (similar to block index) to uniquely differentiate

among blocks and authenticate the tag information of

challenged blocks before proof verification. However, the

skip list in essence is an authenticated structure used to test

set-membership for a set of elements. To prove the

membership of a specific node, a verification path from the

start node to the queried node must be provided, its

communication cost is linear to the number of challenged

blocks. Moreover, there’s no explicit implementation of

public verifiability given for their scheme. Qian Wang et al.

[6] combine BLS signature based homomorphic authenticator

with Merkle hash tree to provide both public auditability and

fully dynamic operations support. Specifically, their scheme

constructs a Merkle hash tree, stores the hashes of tags in the

leaf nodes and recursively computes the root and signs it,

which is used to authenticate the tags of challenged blocks.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 184

Furthermore, they eliminate the index limitation in tag

computation by using H(mi) to replace H(name||i) in [5],

which requires blocks to be different with each other.

However, such a requirement on data blocks is not

appropriate since the probability of block resemblance

increases when block size decreases. In addition, due to the

authentication of challenged blocks with a Merkle Hash Tree

[33], the communication cost of their scheme is also linear to

the number of requested blocks. Zhu et al. [10], [34] use

index-hash table to construct their dynamic auditing scheme

based on zero knowledge proof, which is similar to our index

switcher in terms of index differentiation and avoidance of tag

re-computation. But their design mainly focuses on data

dynamics support, while our scheme goes further by

achieving dynamic operations support and fair arbitration

together.

Qian Wang et al. [6] combine BLS signature based

homomorphic authenticator with Merkle hash tree to provide

both public auditability and fully dynamic operations support.

Specifically, their scheme constructs a Merkle hash tree,

stores the hashes of tags in the leaf nodes and recursively

computes the root and signs it, which is used to authenticate

the tags of challenged blocks. Furthermore, they eliminate the

index limitation in tag computation by using H(mi) to replace

H(name||i) in [5], which requires blocks to be different with

each other. However, such a requirement on data blocks is not

appropriate since the probability of block resemblance

increases when block size decreases. In addition, due to the

authentication of challenged blocks with a Merkle Hash Tree

[33], the communication cost of their scheme is also linear to

the number of requested blocks. Zhu et al. [10], [34] use

index-hash table to construct their dynamic auditing scheme

based on zero-knowledge proof, which is similar to our index

switcher in terms of index differentiation and avoidance of tag

re-computation. But their design mainly focuses on data

dynamics support, while our scheme goes further by

achieving dynamic operations support and fair arbitration

together.

Recently, providing fairness and arbitration in auditing

schemes has become an important trend, which extends and

improves the threat model in early schemes to achieve a

higher level of security insurance. Zheng et al. [11] construct

a fair and dynamic auditing scheme to prevent a dishonest

client accusing an honest CSP. But their scheme only realizes

private auditing, and is difficult to be extended to support

public auditing. Kupcu [12] proposes a framework on top of

Erway’s DPDP scheme [9], where the author designs

arbitration protocols on the basis of fair signature exchange

protocols in [13]. Moreover, the author goes further by

designing arbitration protocols with automated payments

through the use of electronic cash. Compared to these

schemes, our work is the first to combine public verifiability,

data dynamics support and dispute arbitration simultaneously.

Other extensions to both PDPs and PoRs are given in [35],

[36], [37], [38], [39]. Chen et al. [37] introduce a mechanism

for data integrity auditing under the multiserver scenario,

where data are encoded with network code. Curtmola et al.

[35] propose to ensure data possession of multiple replicas

across the distributed storage scenario. They also integrate

forward error-correcting codes into PDP to provide robust

data possession in [36]. Wang et al. [39] utilize the idea of

proxy re-signatures to provide efficient user revocations,

where the shared data are signed by a group of users. And in

[16], [38], they exploit ring signatures to protect the identity-

privacy of signers from being known by public verifiers

during the auditing.

3. PROPOSED MODELLING

In the cloud environment, both clients and CSPs have the

motive to cheat. The scheme in the aim of supporting

variable-sized data blocks, authorized third party auditing and

fine-grained dynamic data updates is described in four parts

which are shown in figure 4.1ist as follows:

User: Users are those who have data to be stored in the cloud.

Cloud Service Provider (CSP): A CSP, who has significant

resources and expertise in building and managing distributed

cloud storage servers.

Third Party Auditor (TPA): A TPA is trusted to assess and

expose risk of cloud storage services based on the user’s

request.

Third Party Arbitrator (TPAR): A TPAR is trusted to

fairly settle any dispute about proof verification and dynamic

update, and find out the cheating party.

To guarantee secure access control in public cloud storage, we

claim that an access control scheme needs to meet the

following four basic security requirements:

Data confidentiality. Data content must be kept confidential

to unauthorized users as well as the curious cloud server.

Collusion-resistance. Malicious users colluding with each

other would not be able to combine their attributes to decrypt

a ciphertext which each of them cannot decrypt alone.

TPA accountability. An auditing mechanism must be

devised to ensure that an TPAs misbehavior can be detected

to prevent Users abusing their power without being detected.

No ultra vires for any TPA. An TPA should not have

unauthorized power to directly generate secret keys for users.

This security requirement is newly introduced based on our

proposed hierarchical framework.

 The owner of the file will upload the data to the

cloud[The file is fragmented into blocks, encrypted

and stored in cloud].Each file is recognized by a

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 185

unique ID and the details about file ID and its

associated block data are maintained in a log file in

cloud by CSS[for each file the log detail is updated].

 After uploading, the owner of the file also plays a

role of client as any authenticated client can update

/modify the existing file in cloud.

Fig 1. Architecture

 When the file gets uploaded to the cloud the third

party auditor (TPA) verifies the file and its blocks

[e.g File consists of all pages from 1 to 10 or not].If

the file is consistent, then verified flag is set with

unique key value.

 Similarly the CSS also verifies the file, the same way

as (TPA) and the generated key will also be similar,

if the file is consistent.

 The client after logging in to the cloud can get to see

about the files available, but the client cannot access

it.

 Before giving access to the client the third party

arbitrator authenticates the file by matching the key

provided by TPA and CSS to TPAR; if it matches,

then the client is given access to the file.

 Now here the client also has the privilege to modify

the file.This is the reason why the owner is also

logged in as a client.

 After the updation of the file,step 3 to step 7 are

followed the same.

 For each client’s request,before giving access to the

client,the TPAR authenticates and then proceeds

accordingly.

2.1 Design Goals

Our design goals can be summarized as follows:

1) Public verifiability for data storage correctness: to allow

anyone who has the public key to verify the correctness of

users’ remotely stored data;

2) Dynamic operation support: to allow cloud users to

perform full block-level operations (modification, insertion

and deletion) on their outsourced data while guarantee the

same level of data correctness, and the scheme should be as

efficient as possible;

3) Fair dispute arbitration: to allow a third party arbitrator to

fairly settle any dispute about proof verification and dynamic

update, and find out the cheating party.

4. PROPOSED METHODOLOGY

Setup: The client will generate keying materials via KeyGen

and FileProc, and then upload the data to CSS. The client will

store a RMHT instead of a MHT as metadata. Moreover, the

client will authorize the TPA by sharing a value signature

with AUTHENTICATON.

Verifiable Data Updating: The CSS performs the client’s fine-

grained update requests via Perform Update,then the client

runs VerifyUpdate tocheck whether CSS has performed the

updates on both the data blocks and their corresponding

authenticators (used for auditing) honestly.

Challenge, Proof Generation and Verification:It describes

how the integrityof the data stored on CSS is verified by TPA

via GenChallenge,GenProof and Verify.

3.1 Integrity Checking

TPA must show CSS that it is indeed authorized by the file

owner before it can challenge a certain file. TPA will decide

to verify some blocks from the total blocks. Then, a challenge

message is generated with TPA’s ID, which is encrypted with

the CSS’s public key. So that CSS can later decrypt with the

corresponding secret key. TPA then sends challenge to CSS.

After receiving challenge, CSS will first verify signature and

the client’s public key and output REJECT if it fails.

Otherwise, CSS will compose the proof P as then output P.

CSS will send P to TPA. After receiving P, TPA verify

signature by using public keys. If they are equal, then returns

TRUE, otherwise it returns FALSE.

3.2 Block-Level Operations

 Block-level operations in fine-grained dynamic data

updates may contain the following 5 types of

operations

 Partial Modification: Consecutive part of a certain

block needs to be updated;

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 186

 Whole-Block Modification: Whole block needs to be

replaced by a new set of data;

 Block Deletion: Whole block needs to be deleted

from the tree structure;

 Block Insertion : Whole block needs to be created on

the tree structure to contain newly inserted data;

 Block splitting: Part of data in a block needs to be

taken out to form a new block to be inserted next to

it.

3.3 Arbitration

As we have called attention to previously, in the cloud

condition, the two customers and CSPs have the thought

process to swindle. In our plan, the PPAP is utilized by the

reviewer to get key lists for asked for obstructs at evidence

confirmation stage, hence the check result depends on the

accuracy of the record maker. Be that as it may, the age and

refresh of record switcher are performed by the information

proprietor just, it will possibly give an untrustworthy

proprietor the chance of dishonestly blaming a genuine CSP.

In this sense, we should give some system to guarantee the

accuracy of the file switcher and further the reasonableness of

conceivable assertion, so no gathering can outline the other

party without being recognized.

A direct route is to let the arbitrator(TPAR) keep a duplicate

of the list of keys. Since the difference in the list is caused by

unique tasks, the customer can send essential refresh data (i.e.,

activity write, activity position, new label file) to the TPAR

for each refresh activity. With these data, the referee could re-

develop the most recent variant of the file switcher, whose

accuracy chooses the legitimacy of later assertion. In any

case, such an answer costs O(n) stockpiling at the authority

side and needs the mediator to be associated with each refresh

activity. In a perfect world, we need the TPAR just embrace

the part of an authority who includes just at question

settlement, and keeps up a consistent stockpiling for state

data, i.e., open keys of the customer and the CSP.

3.3.1 Integrity Proof

1) The Third party Arbitrator (TPAR) requests {Seqc;Ωs; Sigs}

and Sigs from the client. Then he checks the signature Sigs of

the CSP. If it is invalid, the TPAR may unauthorize the client

for their ineffiency; otherwise the TPAR proceeds.

2) The TPAR requests {Seqs;Ωs; Sigc} from the CSP. Then he

checks the signature Sigc of the client. If the signature does

not verify correctly, the TPAR may unauthorize the CSP for

their ineffiency; otherwise the TPAR proceeds.

3) If Seqc = Seqs, then the TPAR requests from the client the

challenged set Q that causes dispute on proof verification and

retransmit it to the CSP to run the auditing scheme. The CSP

computes the proof returns it to the TPAR for verification.

The TPAR checks the proof using the verified index switcher.

4) If there is a mismatch in Seqc and Seqs. The TPAR can be

sure that the party who gives a smaller sequence number is

performing a replay attack; he may unauthorize the cheating

party. Specifically, if Seqc>Seqs, the client is cheating by

replaying an old signature from the CSP; if Seqs>Seqc, the

CSP is cheating by replaying an old signature from the client.

Fig 2. Message Generated System

3.3.2 Fair Arbitration Dynamic Update

The first two steps are the same as that of the arbitration

protocol on integrity proof. According to the result of

sequence number comparison (Seqc and Seqs), we divide the

protocol into two situations.

 The TPAR requests the update record from the

client.

 For block modification and insertion, the TPAR

verifies the correctness of by verifying. If fails, the

TPAR may unauthorized the client for cheating;

otherwise, the TPAR is convinced that the updated

block and its tag are consistent with each other. For

block deletion, this step can be omitted.

 The TPAR transmits to the CSP, and requests on the

small challenge set from the CSP. Then he verifies

the validity according to algorithm. If fails, the

TPAR may unauthorize the CSP for denying the

update; otherwise, the TPAR proceeds.

 The TPAR updates the index switcher, and then he

requests and verifies new signatures from both

parties. The TPAR may unauthorize the party who

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 187

sends an invalid signature. If both signatures verify,

the TPAR forwards to the CSP, and to the client.

Fig 3. Message Checking System

5. PERFORMANCE EVALUATION

Our scheme is implemented using Scripting language on a

Linux system equipped with a 4-Core Intel 3 processor

running at 2.4GHz, 4GB RAM and a 7200 RPM 2TB drive.

Algorithms are implemented using the Pairing-Based

Cryptographic (PBC) library 0.5.11 and the crypto library

OpenSSL 1.0.0. For security parameters, we choose the curve

group with a 160-bit group order and the size of modulus is

1024 bits. Our scheme provides probabilistic proof as [4]: if t

fraction of the file is corrupted, by challenging a constant c

blocks of the file, the auditor can detect the data corruption

behavior at least with probability p = 1 − (1 − t)c. We choose

c = 460, thus the detection probability is about 99%. The

integrity proof is of constant size as in [5]. While most

authenticated structure based schemes [6], [9], [11] need to

send auxiliary authentication information to the auditor,

which leads to linear communication overhead. The size of

the test data is 10 GB, and the block size of fragmentation

varies from 2 KB to 1 MB. All results are on the average of

10 trials.

We analyze the performance of our auditing scheme from

three aspects: key generation time, encryption time time and

File Upload time. For data dynamic update and dispute

arbitration, we test the update overhead by inserting, deleting

and modifying 100 blocks and tags. In addition, we test the

cost of signature computation and verification with the index

switcher containing different number of index pairs, and the

shifting overhead of index pairs caused by block insertion and

deletion.

Fig 4. File Size vs Upload Time

Fig 5. File Size Vs Encryption Time

6. CONCLUSION

The aim of this paper is to provide an honesty evaluating plan

with public undeniable nature, proficient information flow

and reasonable debate intervention. To dispense with the

confinement of list use in label calculation and proficiently

support information flow, we separate between piece records

and label files, and devise a list switcher to keep square label

list mapping to stay away from label re-calculation caused by

square refresh activities, which brings about constrained extra

overhead, as appeared in our execution assessment. In the

mean time, since the two customers and the CSP possibly

may get rowdy amid inspecting and information refresh, we

expand the current danger show in flow research to give

reasonable intervention to understanding question amongst

customers and the CSP, which is of essential criticalness for

the sending and advancement of evaluating plans in the cloud

environment. Our examinations show the effectiveness of our

proposed scheme, whose overhead for dynamic update and

dispute arbitration are reasonable.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 188

REFERENCES

[1] Y. Deswarte, J.-J. Quisquater, and A. Sa¨ıdane, “Remote integrity
checking,” in Proc. 5th Working Conf. Integrity and Intl Control in

Information Systems, 2004, pp. 1–11.

[2] D. L. Gazzoni Filho and P. S. L. M. Barreto, “Demonstrating data
possession and uncheatable data transfer.” IACR Cryptology ePrint

Archive, Report 2006/150, 2006.

[3] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proc. 14th ACM Conf. Computer and Comm. Security

(CCS07), 2007, pp. 584–597.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted stores,”

in Proc. 14th ACM Conf. Computer and Comm. Security (CCS07),

2007, pp. 598–609.
[5] H. Shacham and B. Waters, “Compact proofs of retrievability,” in

Proc. 14th Intl Conf. Theory and Application of Cryptology and

Information Security: Advances in Cryptology (ASIACRYPT 08),
2008, pp. 90–107.

[6] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public

verifiability and data dynamics for storage security in cloud
computing,” in Proc. 14th European Conf. Research in Computer

Security (ESORICS 08), 2009, pp. 355–370.

[7] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit
and extraction of digital contents.” IACR Cryptology ePrint Archive,

Report 2008/186, 2008.

[8] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable
secure cloud data storage services,” Network, IEEE, vol. 24, no. 4, pp.

19–24, 2010.

[9] C. Erway, A. K¨upc¸ ¨ u, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. 16th ACM Conf. Computer and

Comm. Security (CCS 09), 2009, pp. 213–222.

[10] Y. Zhu, H.Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic
audit services for integrity verification of outsourced storages in

clouds,” in Proc. ACM Symp. Applied Computing (SAC 11), 2011, pp.

1550–1557.

[11] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,” in

Proc. 1st ACM Conf. Data and Application Security and Privacy

(CODASPY 11), 2011, pp. 237–248.
[12] A. K¨upc¸ ¨ u, “Official arbitration with secure cloud storage

application,” The Computer Journal, pp. 138–169, 2013.

[13] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of
digital signatures,” in Proc. 17th Intl Conf. Theory and Applications of

Cryptographic Techniques: Advances in Cryptology

(EUROCRYPT98), 1998, pp. 591–606.
[14] C.Wang, Q.Wang, K. Ren, andW. Lou, “Privacy-preserving public

auditing for data storage security in cloud computing,” in Proc. IEEE
INFOCOM, 2010, pp. 1–9.

[15] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou,

“Privacypreserving public auditing for secure cloud storage,” IEEE
Trans. Computers, vol. 62, no. 2, pp. 362–375, 2013.

[16] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public auditing

for shared data in the cloud,” IEEE Trans. Cloud Computing, vol. 2,
no. 1, pp. 43–56, 2014.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and

verifiably encrypted signatures from bilinear maps,” in Proc. 22nd Intl
Conf. Theory and Applications of Cryptographic Techniques:

Advances in Cryptology (EUROCRYPT03), 2003, pp. 416–432.

[18] P. A. Bernstein and N. Goodman, “An algorithm for concurrency
control and recovery in replicated distributed databases,” ACM Trans.

Database Systems, vol. 9, no. 4, pp. 596–615, 1984.

[19] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Low-overhead by
zantine fault-tolerant storage,” in ACM SIGOPS Operating Systems

Review, vol. 41, no. 6, 2007, pp. 73–86.

[20] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of
replication and a solution,” in ACM SIGMOD Record, vol. 25, no. 2,

1996, pp. 173–182.

[21] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking

the correctness of memories,” Algorithmica, vol. 12, no. 2-3, pp. 225–
244, 1994.

[22] M. Naor and G. N. Rothblum, “The complexity of online memory

checking,” in Proc. 46th Ann. IEEE Symp. Foundations of Computer
Science, 2005, pp. 573–582.

[23] A. Oprea, M. K. Reiter, and K. Yang, “Space-efficient block storage

integrity.” in Proc. 9th Network and Distributed System Security
Symp. (NDSS ’05), 2005.

[24] T. S. Schwarz and E. L. Miller, “Store, forget, and check: Using

algebraic signatures to check remotely administered storage,” in Proc.
IEEE Intl Conf. Distributed Computing Systems (ICDCS 06), 2006,

pp. 12–12.

[25] E.-C. Chang and J. Xu, “Remote integrity check with dishonest storage
server,” in Proc. 13th European Conf. Research in Computer Security

(ESORICS 08), 2008, pp. 223–237.

[26] F. Seb´e, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and

J.-J. Quisquater, “Efficient remote data possession checking in critical

information infrastructures,” IEEE Trans. Knowledge and Data Eng.,

vol. 20, no. 8, pp. 1034–1038, 2008.
[27] M. A. Shah, M. Baker, J. C. Mogul, R. Swaminathan et al., “Auditing

to keep online storage services honest.” in Proc. 11th USENIX
Workshop Hot Topics in Operating Systems (HotOS 07), 2007, pp. 1–

6.

[28] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory
and implementation,” in Proc. ACM Cloud Computing Security

Workshop (CCSW 09), 2009, pp. 43–54.

[29] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proc. Theory of cryptography(TCC ’09),

2009, pp. 109–127.

[30] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Proc. 7th Intl Conf. Theory and Application of Cryptology

and Information Security: Advances in Cryptology (ASIACRYPT 01),

2001, pp. 514–532.
[31] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data

integrity checking protocol with data dynamics and public

verifiability,” IEEE Trans. Knowledge and Data Eng., vol. 23, no. 9,
pp. 1432–1437, 2011.

[32] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and

efficient provable data possession,” in Proc. 4th Intl Conf. Security and
Privacy in Comm. Networks (SecureComm 08), 2008, pp. 1–10.

[33] R. C. Merkle, “Protocols for public key cryptosystems,” in Proc. IEEE

Symp. Security and Privacy, 1980, pp. 122–133.
[34] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative provable data

possession for integrity verification in multicloud storage,” IEEE

Trans. Parallel and Distributed Systems, vol. 23, no. 12, pp. 2231–
2244, 2012.

[35] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp: Multiple-

replica provable data possession,” in Proc. 28th Int’l Conf. Distributed
Computing Systems (ICDCS ’08), 2008, pp. 411–420.

[36] R. Curtmola, O. Khan, and R. Burns, “Robust remote data checking,”

in Proc. 4th ACM int’l Workshop on Storage Security and
Survivability, 2008, pp. 63–68.

[37] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data

checking for network coding-based distributed storage systems,” in
Proc. ACM Cloud Computing Security Workshop (CCSW 10), 2010,

pp. 31–42.

[38] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public auditing
for shared data in the cloud,” in Proc. 5th Int’l Conf. Cloud

Computing, 2012, pp. 295–302.

[39] “Panda: Public auditing for shared data with efficient user revocation
in the cloud,” IEEE Trans. Services Computing, vol. 8, no. 1, pp. 92–

106, 2013.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 5, Issue 12, December (2017) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 189

Authors

Mr. R. Manibharathi completed MCA from Institute
Of Road and Transport Technology, Erode, Anna

University, Chennai. He graduated BSc Information

Technlogy from Manonmaniam Sundaranar
University. He is currently working as Senior

Developer at Shiro Software Solutions. His research

interest in Cloud Computing, networking and Big
Data.

Dr. K. Selva kumar started my research and teaching

works from April 1987 at Bharathidasan University,
Trichy, Tamilnadu, India. Received Ph.D. from

Bharathidasan University in 1992. At present working

as Assistant Professor in Mathematics at University

College of Engineering, Anna University, Nagercoil

Campus, Tamilnadu, India. Developing software for

Networking , cloud computing. Image Processing,
Singular perturbation problems in control design,

aircraft optimal control guidance, Numerical

methods for engineering related research problems.

Mr. Dinesh R has obtained his Bachelor Degree in

Physics from Manonmaniam Sundaranar University.
The obtained his Masters Degree from Anna

University. Currently He is working as Project

Manager in Shiro Software Solutions. He has 6 years
experience in Software industries. He also has 4 years

experience in teaching as Assistant Professor. His

Specializations include Cloud Computing, Big data
and Networkig.

